If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-15x-36=0
a = 7; b = -15; c = -36;
Δ = b2-4ac
Δ = -152-4·7·(-36)
Δ = 1233
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1233}=\sqrt{9*137}=\sqrt{9}*\sqrt{137}=3\sqrt{137}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-3\sqrt{137}}{2*7}=\frac{15-3\sqrt{137}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+3\sqrt{137}}{2*7}=\frac{15+3\sqrt{137}}{14} $
| N-5x2/3=3/4 | | 1/6x-4/5=2 | | 7x-9x2=5x6 | | b+4÷2=5 | | 3+(x+4)=-3 | | 2/3x+1/4=5 | | 19+18x=9+11x | | 100+6=n | | Y=7x-7x-9 | | 2x+2=3-(6x-2) | | -28=24-4x | | 3n+6=63 | | 3|y-8|+15=21 | | 2(4×-12)+3x=6x+6 | | F(4)=-2x+4 | | -9+(y÷-3)=-6 | | -2x-5(x-1)=-3(2x+5) | | 3x/11=-3x/6 | | 5^x+5^(x+2)=50 | | (k/2)+(1/2)=3 | | 24=-3x-12 | | 4/n^2+7n+10-1/n+5=n/n^2+7n+10 | | 5x-9/x=12 | | -2(3x-6)=18-5x | | 9=4w^2+4w | | 5.50h+19.00=6.75h+10.00 | | 5x-9/×=12 | | P=-1/10x+1000 | | 3f–-34=91 | | 51/n=17 | | -20m+20=-20-12m | | (x^2-x-1)/((x^2-3x)^0.5)=0 |